Echo-planar BOLD fMRI of mice on a narrow-bore 9.4 T magnet.
نویسندگان
چکیده
The feasibility of BOLD fMRI in association with electrical somatosensory stimulation on spontaneously breathing, isoflurane-anesthetized mice was investigated using spin-echo, echo-planar imaging (EPI) on a vertical narrow-bore 9.4 T magnet. Three experiments were performed to derive an optimal fMRI protocol. In Experiment 1 (n = 9), spin-echo BOLD responses to 10% CO2 challenge under graded isoflurane (0.25-1.25%) ranged from 10 +/- 2% to 3.5 +/- 0.9%; the optimal BOLD contrast-to-noise ratio peaked at 0.75% isoflurane. In Experiment 2 (n = 6), hindpaw somatosensory stimulations using 1-7 mA under 0.75% isoflurane revealed the optimal BOLD response was at 6 mA. In Experiment 3 (n = 5), BOLD responses to 4 and 6 mA stimulation under 0.75% and 1% isoflurane were evaluated in detail, confirming the optimal conditions in Experiment 2. These results demonstrated that BOLD fMRI using single-shot, spin-echo EPI in a mouse somatosensory stimulation model could be routinely performed on high-field, vertical, narrow-bore magnets. This protocol might prove useful for fMRI studies of transgenic mice.
منابع مشابه
Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes.
The nature of vascular contribution to blood oxygenation level dependent (BOLD) contrast used in functional MRI (fMRI) is poorly understood. To investigate vascular contributions at an ultrahigh magnetic field of 9.4 T, diffusion-weighted fMRI techniques were used in a rat forepaw stimulation model. Tissue and blood T(2) values were measured to optimize the echo time for fMRI. The T(2) of arter...
متن کاملEcho-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil
Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (~54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room t...
متن کاملFunctional MRI in the rat at 9.4 T and 16.4 T
Introduction Functional MRI (fMRI) in animals at high magnetic fields keeps expanding our knowledge about the basics of thinking and the fMRIsignal itself. Yet, until the signal to noise ratio in MRI depends linearly on the magnetic field strength and calls for even stronger magnets for the detection of even smaller anatomical details, the relation between the functional MR-response and field s...
متن کاملEffect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI
Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...
متن کاملSource of nonlinearity in echo-time-dependent BOLD fMRI.
Stimulation-induced changes in transverse relaxation rates can provide important insight into underlying physiological changes in blood oxygenation level-dependent (BOLD) contrast. It is often assumed that BOLD fractional signal change (DeltaS/S) is linearly dependent on echo time (TE). This relationship was evaluated at 9.4 T during visual stimulation in cats with gradient-echo (GE) and spin-e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 52 2 شماره
صفحات -
تاریخ انتشار 2004